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Highlights of Work

In the following, we provide a summary of our most significant research accomplishments

resulting from this contract. For the sake of brevity, most of the projects are explained in a

paragraph length, highlighting only pertinent results.

Magnetopause

It is well known that the magnetopause plays a central role in the energy and particle transfer of

the shocked solar wind into the magnetosphere. One of the primary processes mediating this
interaction is that of dayside reconnection. In addition, viscous coupling via wave-particle

processes (e.g., Kelvin-Helmholtz instability, KH) is an alternative means of energy exchange and
mixing between the magnetosheath and magnetospheric plasmas. Our objective was to study these

processes as they occur during southward IMF, and how they modify the structure of the

magnetopause and its boundary layer(s).

First, we addressed the fundamental question of how reconnection takes place at the kinetic level.
While almost all resistive MHD and ion-kinetic models assume that the tearing instability

underlies magnetopause reconnection, theories of tearing predicted very small saturation
amplitudes, making it very unlikely. Using 2-D, high-resolution full-particle simulations, we
studied the evolution of the magnetopause current layer as a function of rotation of the magnetic

field. We found that the tearing mode, even for field configurations far from being antiparallel, has

fast growth rates and saturates at sufficiently large amplitudes to account for the formation of flux

transfer events (FFEs) in the magnetopause. We also developed a new nonlinear theory for the
saturation of the tearing mode that correctly predicts the amplitudes seen in the simulations.

Having thus established a good footing for the standard assumption in ion-kinetic (hybrid)
simulations, that the tearing instability underlies the reconnection process and the formation of

plasmoids (FFEs), we proceeded to investigate the magnetopause with a variety of 2-D and 3-D
simulations. At the local level, we established that KH instability is much more important, and

more intimately tied to reconnection, than previously thought. We found that the drift between

current-carrying ion species and ions of the surrounding sheath and magnetosphere will make the
current sheet unstable to KH in a large range of circumstances. In contrast to conventional KH

instability, which is driven by the sheath flow, this new instability also operates close to the
subsolar point. The significance of this type of KH is that it sets a lower limit on the

magnetosheath thickness, strongly interacts with tearing (allowing for more flux to connect), and

leads to significant enhancements of the plasmoid core field.
In general, flux ropes are 3-D structures, and as part of the large-scale reconnection configuration,

require inflow/outflow simulations. We have summarized some of our results in Plate I. These
simulations employ the kinetic equivalent of the open, floating boundary conditions. Any inflow

or outflow is self-consistently generated by the reconnection process and is not imposed from the
outside. Plate ! shows a flux transfer event (FTE) formed on the magnetosheath side at two

different view angles. In both cases, the magnetosheath is on the left and the magnetosphere is on

the right. Such FFEs manifest themselves as bubbles (depressions) on the magnetosheath

(magnetospheric) side of the surface of the magnetopause. While regardless of the size of the
guide field, the plasmoid bulges almost entirely into the magnetosheath (due to the strong B field

in the magnetosphere), it is only for a finite guide field that the plasmoid detaches to form a

fluxrope. We also note from the simulations that in the presence of a finite guide field,
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Plate I. Formation of a magnetosheath FT'E in a 3-I) hybrid simulation of the unagnetopause. A flux rope initially appears as a blister

or a bubble on Ihe surface of the magnelopause but unlike a plasmoid, it detaches from this surface. This el'feet is dem_.mstrated

through two viewing angles of an isosurface of IB_I, where y is in the direction of the main component of the field.

3-D effects cause the reconnection process to be cut-off temporarily, leading to intermittent

reconnection. We are currently investigating whether this intermittence can explain the observed

occurrence rates and sizes of FTEs. Finally, the strong coupling between the guide field and the

Hall-induced field results in a fluxrope structure with very large core fields and can explain the

ubiquitous observations of such high fields in FTEs. This is in spite of the high plasma beta of the

magnetosheath which acts to suppress the core field generation.

We have also investigated the structure of the magnetopause during periods of southward IMF

using planar and curved geometries in 2-D hybrid simulations. In the planar geometry, the

structure of the magnetopause during steady reconnection (i.e., a single X line) was investigated.

The results showed a structure consisting of multiple discontinuities/boundaries, none of which

could be matched with a classical fluid discontinuity such as a rotational discontinuity. The causes

and degree of prevalence of such structures is under investigation. Similar results where also

observed in the curved geometry where multiple X lines and plasmoids with varying sizes were
formed. In this case, however, the lack of the usual discontinuities could be attributed to the

presence of multiple plasmoids at the magnetopause which result in a magnetic field topology

quite different from that of a single X-line reconnection. The presence of plasmoids also gives rise

to a considerable variation in magnetopause thickness as a function of latitude. This variation was

found not to be symmetric with respect to the magnetic equator nor was it found to be a

monotonically increasing or decreasing function of magnetic latitude.



Magnetotail

In addition to research that directly addresses the energy release processes during substorms, the

question of the overall structure and dynamics of the magnetotail is an important research topic.
Some of the outstanding issues that we addressed were in regards to the formation of the

plasmasheet boundary layer (PSBL) and the population of the central plasma sheet (CPS). Slow
shocks, which may bound the reconnection region, are the prime mechanism for plasma entry into

the CPS, energization of ions, and formation of ion beams.
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Plate 2. Left panel: lsosurface of the main field component B, at I/2 of its lobe value in our 3-1) tail simulation, showing the
modulation of the current sheet due to rcconcction and KH. Top right panel: associated ohmic heating in the ionosphere. Bottom right

panels: y-z cuts of the cross-tail current .Jr and the parallel current, at x = 12 R_. The current is diver'led around the thickening CPS and

only parlially converled into j, (plot intensity scale factor: I0) at the PSBL

Over the past several years we have completed a substantial amount of work documenting the

physics of slow shocks. Based on this work, slow shocks in the tail are expected to have a
relatively large dissipation scale length of many tens to a few hundred of ion inertial lengths, and

should be accompanied by backstreaming ions that generate Alfven waves. Slow shocks with just
these characteristics have recently been observed by GEOTAIL. We found that ion thermalization

at large shock normal angles is difficult to achieve due to the finite size of the CPS. As a
consequence, ion distributions will typically be far from Maxwellian and can account for some of
the observations of the crossing from the PSBL to the CPS. Kinetic effects and anisotropies also

have a large impact on the phase velocities of low frequency modes and the ensuing ordering of



thediscontinuitiesin theflow. Oneof themoreexcitingpossibilitiesresultingfrom this is a

combined discontinuity made up of a slow shock and an RD. We demonstrated the existence of

this coupled discontinuity with hybrid simulations. Shortly after our prediction, this new type of

discontinuity was confirmed observationally in the tail. Slow shocks or slow shock-like
discontinuities may also form more generally in the vicinity of major structures extending into the

lobe, such as plasmoids. Taking a closer look at the plasmoids, we found that simultaneous
reconnection from more than one X-line leads to a complicated "onion-shell" structure of

interpenetrating ions (and associated By structure), which has recently been confirmed by
GEOTAIL observations.

The dynamics and stability of the near-Earth tail are intimately related to the substorm onset. As a

first step in exploring this connection, we investigated the effect of O ÷ ions on the stability of the
tail. Since it is known that ionospheric oxygen can make up a large fraction of the plasma (with

increasing densities around substorm onset), one of the outstanding issues has been the role of O ÷
in the substorm process. We showed that their curvature-drift-generated current only mildly affects

the tail field configuration and reconnection rate, unless the O + beam parameters approach the

marginal limit for firehose instability. However, there are many more ways in which O ÷ can take
part in substorm processes that remain to be investigated.

Many of the outstanding questions with regard to substorm onset are related to the respective roles

of near-Earth current disruption mechanisms vs. NENL (near-Earth neutral line) reconnection, and
the role of ionospheric coupling. To address these issues, we have performed the first 3-D ion
kinetic simulations of the combined tearing (reconnection) and cross-tail instabilities of the near-

Earth tail, demonstrating their respective ionospheric signatures. These large-scale, non-periodic
inflow/outflow simulations allow us to study both the non-driven and driven aspects of substorms.

Similar to our results for the magnetopause above, we find that the near-Earth tail is unstable to
KH. These simulations allow us to analyze the development of the current diversion, associated

field aligned currents, and their ionospheric signatures. Plate 2 shows a snapshot of the 3-D

current sheet (left panel), its ionospheric signature (top right panel), and an x-z cut demonstrating

the (asymmetric) current diversion around the reconnection region. In this work, we have
introduced ionospheric coupling by solving the ionospheric potential equation from the mapped

magnetospheric parallel current, and by mapping the electric field back to the near-Earth boundary
of the simulation. The significance of these types of simulations is that the crucial temporal

evolution of physical quantities can be directly compared to both in situ and ionospheric
observations, to help understand substorm dynamics and to distinguish between competing
substorm models.

The planned extension of this work is to refine the description of the ionospheric coupling and the

ring current, and to increase the simulation in all dimensions, such that the near and far tail are
both included at once.

Global Simulations

Recent advances in computer technologies have allowed us to perform simulations that stretch

from the upstream solar wind to the magnetotail regions. These simulations cover many aspects of

the solar wind - magnetosphere interaction simultaneously, and enable us to look at all structures
and boundary layers, and how they interact, as a whole. Our recent 2-D global hybrid simulations

of solar wind interaction with a dipole magnetic field exemplify this major breakthrough. Plate 3

shows the ion temperature as a function of X and Y at the end of the simulation run. As the labels
in the figure indicate, these simulations are able to capture the magnetosphere in considerable
detail.
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Piale 3. An intensity plot of the ion temperature as obtained from a 2-D global hybrid simulation of solar wind interacting with a dipole

field during southward IMF.

Although global in nature, these simulations have a cell size of one ion inertial length and

reproduce accurate kinetic physics on ion scales. As an example, the simulations reproduce the

familiar plasma characteristics and associated ion thermalization at the quasi-perpendicular (Ql)
shock. However, these simulations also produce new physics on ion scales. An example that has

escaped previous, local I-D or 2-D simulations is the possibility of KH instability at the Q± portion
of the shock. Plate 4 shows the ensuing filamentation and break-up of the shock surface. In

simulations with the IMF mostly oriented in the dawn-dusk direction, a large velocity shear

develops between the solar wind and the near-shock sheath flow. This can be seen in the left panel
of Plate 4 that shows the y (northward/southward) component of velocity. This shear flow results

in the Kelvin-Helmholtz instability that in the nonlinear regime gives rise to the filamentation of
the shock and formation of a solitary band/filament, as evident in the right panel of Plate 4. The

field and plasma signatures within this band are consistent with that of fast magnetosonic shock.

However, except for a large diversion of the flow, the plasma behind the band has properties
similar to thai of the solar wind until a secondary shock front is encountered. As a result, the
traversal of the shock filament and the secondary shock front resembles a multiple shock

encounter except for the flow diversion behind the filament. Although single spacecraft

measurements are capable of detecting (or may already have) the presence of such filamentation

by virtue of its flow diversion, multi-spacecraft measurements such as the upcoming CLUSTER II
mission are more suitable for detection of such structures.
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Plate 4. Intensity plots of ion density and Vy (northward velocity component) from a 2-1) hybrid simulation of the curved bow
shcx:k.Bow shock is unstable to the Kclvin-Hchnhohz instability (KH). Early in the simulation, the KH gives rise to modulationsof
the shock surface (left panel). As KH develops, part of the shock surface peels off. giving rise Io a solitary structure as seen in the
lower part of the right panel.

We emphasize that the most compelling aspect of these global kinetic simulations is the fact

that the underlying physics down to ion temporal and spatial scales is correctly captured. This,

together with the fact that by the right choice of plasma parameters we can ensure that the

simulated plasmas have properties (e.g., density, flow velocity, temperature, and field strength)

similar to the solar wind and magnetospheric regions, facilitates a direct comparison of results

with spacecraft measurements. This is further illustrated in Plate 5. The top panel of Plate 5

shows an intensity plot of the total magnetic field strength with field lines superimposed on it

while the bottom two panels show magnetic field and plasma parameters for cuts along the

terminator and deep tail. Evidence for magnetic reconnection on the dayside can be inferred

from the field lines. Also, modulation of the magnetopause surface (light region) due to

multiple plasmoids can be seen. On the night side, both dipolar and highly stretched field lines

are present with the X-line having just moved out of the simulation domain on the right hand

boundary. The light region in the tail corresponds to the neutral sheet. The bottom two panels in

Plate 5 clearly demonstrate the capabilities of these simulations to account for both global as
well as local kinetic structure of various discontinuities and boundaries. For example, the cut

along the terminator shows field and plasma fluctuations in the upstream followed by a rather
broad and turbulent structure for the quasi-parallel shock. Further downstream, another

transition associated with the magnetopause and boundary layer can be seen. Note that this

layer is quite broad and considerably different from the subsolar magnetopause. This is due to

the fact that here the transition is from the magnetosheath to the plasma mantel whose

properties are similar to the magnetosheath and considerably different from the magnetospheric

plasma near the subsolar magnetopause. The outer tail cut shows plasma and field variations
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Plate 5. The result from a 2-1) gh)bal hybrid simulation of the nmgnetosphere. Total magnetic field strength as well as the field

lines arc shown in the upper panel. Also shown are variation of field and plasma quantities across two cuts, one along the

terminator and another in the oulcr tail region.



associated with traversal from the northern lobe through the plasmasheet boundary layer, central

plasma sheet, the southern boundary layer and the lobe. These variations are similar to the
modified Harris structure that has been observed recently in the magnetotail. Note that because of

the large-scale flow pattern in the tail, the plasma is moving towards the magnetotail (positive
Vx) even though the cut is made at the earth side of the X-line. This flow pattern reverses and
becomes earthward at X - 900 reaching its maximum value of - 400 km/s at the inner edge of the

plasma sheet (X - 600) where plasma begins to move along the dipolar field lines to both
southern and northern high latitude regions.

Physics of the Cusp

As part of our continuing study of the physical processes at the cusp, we have been working with
Dr. Shen-Wu Cheng of the University of Iowa. The purpose of this collaboration has been to test

the hypothesis that the high energy particles observed in the cusp have originated from the quasi-
parallel bow shock. Currently, two different explanations have been put forth for the origin of

high energy particles in the cusp. They could either come from the magnetosphere or as Dr.
Scudder has proposed, they could come from the quasi-parallel bow shock. The shape of the

power spectrum of these particles and its similarity with those in the quasi-parallel bow shock

region lend support to this latter explanation. However, to prove to establish the quasi-parallel
origin of these particles, two things must be shown. First, there should exist a magnetic
connection from the quasi-parallel bow shock to the cusp. Secondly, it must be shown that

particles can actually go from the quasi-parallel bow shock to the cusp. Using our global
simulations we have established that indeed the southern part of bow shock is magnetically

connected to the northern cusp. We are now in the process of determining the detailed mechanism

through which the particles transport from the bow shock to the cusp. We have selected an event
and have constructed simulation parameters similar to it. We have started a run using these

parameters and a larger simulation box in order to examine the details of the particle transport.
Our preliminary results are consistent with the conclusion that that the high energy particles in the

cusp are indeed coming from the quasi-parallel bow shock.

Core field Generation

Plasmoids/flux ropes have been observed both at Earth's magnetopause as well as in the

magnetotail. Magnetic field measurements of such structures often reveal that rather than a
minimum in field strength at their centers as expected from a simple O-type neutral line picture,

they exhibit a strong core field. To address this issue, we used two-dimensional (2-D) and 3-D
hybrid simulations to investigate the magnetic structure of reconnection layer in general and the
formation of the core field within plasmoids in particular. We showed that the reconnection layer

in the magnetotail is unstable to the fire hose instability. As a result, the region between the lobe

and the central plasma sheet is nearly at the marginal fire hose condition. We contrasted the

magnetic signatures of single and multiple X line geometries and showed that the interaction of
outflowing jets from neighboring X lines leads in general to a highly complex magnetic structure

within a plasmoid. We explained the large observed core fields in terms of Hall-generated
currents which can naturally lead to core field strengths that even exceed the ambient lobe field in

magnitude. Ion beta and the presence of a preexisting guide field are two important factors

controlling the Hall-generated fields. In particular, we showed that the presence of the small
ubiquitous cross-tail field component in the magnetotail can under certain conditions lead to a

strong unipolar plasmoid core field. There exist significant differences between core fields
associated with plasmoids at the magnetopause and those in the tail. This is due to (I) high



plasmabeta in the magnetosheathand (2) the asymmetryin plasmadensityacrossthe
magnetopause.Theformerleadsto smallercorefieldsat themagnetopause,whereasthelatter
leadsto differencesin the polarityand structureof core fields within magnetopauseand
magnetotailplasmoids.

Wal6n Relation and RDs

We established an ongoing collaboration with J. D. Scudder at Iowa concerning rotational
discontinuities (RDs) in the solar wind and at the magnetopause. It has long been known that in
both cases the so-called Wal6n relation is not very well satisfied observationally; it is typically

and systematically off by about 30%. Recently, using POLAR observations, J. D. Scudder has
shown that the relation is very well satisfied if one does not use the ions to describe the plasma
motion in the Wal6n relation, but the electrons instead. One possibility that is currently being

tested observationally by J. D. Scudder is based on the fact that the surroundings of (both

observed and simulated) RDs always contain additional fluctuations with spectral components at
and below the ion inertial scale. Averaging over these in the derivation of the ion moments can

produce a systematical error in the sense that at this scale, the Hall term becomes important, and

it is really the electrons that follow the magnetic field more closely. We set up hybrid simulations
of RDs in which we can do evaluations similar to what is done with satellite instrument data. In

particular, the hybrid simulations allow us to distinguish between the electron and ion moments,
and thus to evaluate the Wal6n relation for the to species separately. We have setup a number of
runs of isolated RDs and the in collaboration with the Iowa group we have started to run the same

type of analysis that they perform on the spacecraft data. Our results show that averaging over ion
scale fluctuations can lead to deviations from the Walen relation. Both kinetic effects and the Hall

term are important in this process. This points to the fact that fluid theories are inadequate in

addressing the properties of RDs.

As demonstrated above, these simulations offer an unprecedented opportunity to investigate the

global magnetospheric physics on ion spatial and temporal scales. In spite of the wealth of new

physics that we have been able to uncover through these simulations, much remains to be done.
We look forward to the coming year to tackle many of the remaining magnetospheric issues that

are yet to be resolved.
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